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The rise of contextualized word representations

Application of ML to text requires the conversion of words into a numerical form 

→ Word embeddings: dense high-dimensional vectors whose vicinity in a vector space correlates with their 
association similarity (e.g. coffee—cup, car—wheel) 

→ Pretrained word embeddings: taken “off-the-shelf” using a toolkit (e.g. word2vec) that derives them from another 
ML model that is already  unsupervisedly trained on large unlabeled corpora 

Static word embeddings: a single word embedding for a given word, regardless of other words in a given sentence 

→ A word can contain a wide range of different meanings, depending on the context: 

A. An A-to-Z guide on how you can use Google's Bert for binary text classification tasks with Python and Pytorch 

B. In one sketch, Bert reads a book called Boring Stories and chuckles, "Wow! These boring stories are really 
exciting!"
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The rise of contextualized word representations

Bidirectional “masked” language models represent a given word dependent on the sequence of other 
words in a given text, i.e. the context of the word 

The shift to CWRs played a pivotal role in NLP
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Question Answering on SQuAD 1.1 dev



New trend in NLP

examining which linguistic phenomena may or may not 
be captured by pretrained language models
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What linguistic knowledge can be 
taken for granted when we utilize 
pretrained LMs for downstream tasks? 

Are “pretrained language models and 
massive compute” indeed all we need?
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Sutton (2019); Brooks (2019)



What kind of linguistic knowledge available pretrained LMs are 
not predictive of? 

What are challenging tasks and datasets?
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Can we achieve competitive 
performance with models that  
derive word representations that 
are more transparent about biases 
they capture?
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Zhao et al (2019); May et al (2019)



Can we achieve competitive 
performance with smaller, faster, 
and energy-efficient models?
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Strubell et al (2019); Pham et al (2018); Li and Talwalkar (2018)



Analysis @ *ACL 2018—2019

A. Linguistic probing 

B. Examining attention weights 

C. Challenge sets 

D. Adversarial examples 

E. Explaining predictions 

F. …
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} today: an overview of these approaches 
             focused on English language 



Probing
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probing as a proxy 

Initial “hypothesis” in the words of John Hewitt:

“I think my representation learner unsupervisedly developed a notion of 
linguistic property Y, and encodes this notion in its intermediate representations 
in order to better perform the task it was trained on (like language modeling).”

hard to test directly



1. Freeze an already pretrained “masked” LM  

2. Specify a linguistic property for testing the LM from Step 1  

3. Define a probing task for assessing “understanding” of this linguistic property 

4. Choose a simple probing model for solving the probing task  

5. Collect (labelled) data for this model and make a train/test split  

6. Pass the data from the previous step through the LM → CWRs are (some) LM’s hidden state activations  

7. CWRs from the previous step or their combination are input features to the probing model from Step 4 

8. Train the probing model → if its test performance is: 

A. “good”, it is likely that CWRs are predictive of the linguistic property required for solving the probing task 

B. otherwise, it is hard to draw firm conclusions and we can not be certain that the linguistic property is not 
encoded in CWRs

Probing workflow
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Step 1: Which pretrained “masked” LM?

• BERT (Coenen et al, 2019; Ettinger 2020; Goldberg 2019; Hewitt and Manning, 2019; 
Jawahar et al, 2019; Kim et al, 2019; Kober et al, 2019; Lin et al, 2019; Liu et al, 2019; 
Niven and Kao, 2019; Schwartz and Dagan, 2019; Tenney et al, 2019a, 2019b)  

• ELMo (Kober et al, 2019; Liu et al, 2019; Peters et al, 2018; Perone et al, 2018;  
Schwartz and Dagan, 2019; Tenney et al, 2019a) 

• GPT (Liu et al, 2019; Schwartz and Dagan, 2019; Tenney et al, 2019a) 

• CoVe (Tenney et al, 2019a; Zhang and Bowman, 2019) 

among others
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Step 2–3: Which property and task?

Downstream vs probing tasks: former are too complex to firmly say what linguistic 
information captured by CWRs was necessary to solve them 

Categories of probing tasks:  

• Token labeling  

• Segmentation 

• Pairwise labeling 

• Span labeling 

• Structure prediction

14



Example: Token labeling
Property: basic syntax 

Task: POS tagging; label a word in a given sentence with its Part-Of-Speech tag, e.g. noun, verb, adjective, etc. 

Input sentence: “Vinken, 61 years old”

Vinken, 61 years old →  → {CWR(Vinken), CWR(61), CWR(years), CWR(old)} 

Vinken → CWR(Vinken) →  →  NNP (proper noun, singular) 

61 → CWR(61) →  →  CD (cardinal number) 

years →  CWR (years) →  → NNS (noun, plural) 

old → CWR(old) →  → JJ (adjective)

ℳLM

ℳprobe

ℳprobe

ℳprobe

ℳprobe
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 … frozen LM 
 … trainable probing model
ℳLM

ℳprobe



Example: Segmentation
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Property: spans and boundaries 

Task: chunking; divide a text in syntactically correlated parts using the BIO notation 

Input sentence: “He reckons the current account deficit will narrow”

He reckons the current account deficit will narrow →  → {CWR(He), CWR(reckons), …} 

He → CWR(He) →  →  B-NP (beginning of a noun phrase) 

reckons → CWR(reckons) →  →  B-VP (beginning of a verb phrase) 

the →  CWR (the) →  → B-NP 

current → CWR(current) →  → I-NP (inside a noun phrase)

ℳLM

ℳprobe

ℳprobe

ℳprobe

ℳprobe



Example: Pairwise labeling
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Property: coreferential links between entities in the same sentence 

Task: intra-sentence coreferential link prediction; given two entities in a given sentence, predict whether 
they are coreferent 

Input sentence: “Obama is the former president”

Obama is the former president →  → {CWR(Obama), CWR(president)} 

CWR(Obama, president) = concatenate(CWR(Obama); CWR(president); CWR(Obama)  CWR(president)) 

CWR(Obama, president) →  →  coreferent

ℳLM

⊙

ℳprobe



Example: Span labeling

18

Property: constituent types 

Task: constituent labeling;  label a span of tokens within the phrase-structure parse of the sentence  

Input sentence: “The important thing about Disney is that it is a global brand.”

The important thing about Disney is that it is a global brand. →  → {CWR(The), CWR(important), …} 

CWR(is a global brand) = concat(CWR(is); CWR(brand); CWR(is)  CWR(brand); CWR(is)-CWR(brand)) 

CWR(is a global brand) →  → VP (verb phrase)

ℳLM

⊙

ℳprobe



Example: Structure prediction
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Hewitt and Manning (2019)

Property: ? linear transformation of the CWR-space under which 
vector distance encodes parse trees 

Task: reconstructing parse trees 

1. Learn a linear transformation of the CWR-space s.t. the squared 
distance between transformed word vectors correlates with the 
path length in the dependency parse tree between them 

2. Compute the distance between each word pair using their 
transformed vector representations 

3. From the predicted parse tree distances compute the minimum 
spanning tree

∃

Figure from https://nlp.stanford.edu//~johnhew/structural-probe.html



Step 4: Which probing model?

Probing models have to simple enough so that we can attribute their performance 
to CWRs and not to the capacity of the model 

Popular probing models: linear model (e.g. Liu et al, 2019), one-layer FFNN (e.g. 
Perone et al, 2018), two-layer FFNN (e.g. Tenney et al, 2019a) 

Linear models are simple enough, but a non-linear combination of dimensions in a 
CWR might be predictive of a given linguistic property 

Even a single-layer FFNN can be potentially have large capacity (hint: universal 
approximation theorem)
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Step 5: Which probing data?

Use available annotations: Penn Treebank (PTB), Universal Dependencies English 
Web Treebank (UD-EWT), CCGbank, data of CoNLL shared tasks, STREUSLE, UDS,… 

 More studies devoted to syntactic than semantic phenomena due to available data  

Create data: Diverse Natural Language Inference Collection (DNC; Poliak et al, 
2018; Kim et al, 2019)  

Low vs high-resource: rarely discussed; related to the discussion on the previous slide    

⇒
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Step 6: Which activations?

Hidden activations at each layer (e.g. Peters et al, 2018, Liu et al, 2019)  

Scalar mix of hidden activations at each layer (e.g. Liu et al, 2019, Shwartz and 
Dagan, 2019) 

Hidden activations of the final-layer before the classification layer (e.g. Peters et al, 
2018, Shwartz and Dagan, 2019)  
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Step 7: What is a “good” performance?

Current approach  

• Compare to the state of the art when possible  (e.g. for PoS tagging) 

• Otherwise, researchers’ intuition 

Do we need a more systematic approach? 

• 90+ → predictive; 80—90 → possibly predictive; <80 → unknown 

Fair comparison of different LMs (without re-training) is hard 

Comparison with random word representations (Zhang and Bowman, 2018; Conneau et al, 2018) 
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Probing pitfalls

• What is the definition of encoding/capturing/being predictive of a linguistic 
property? When is the probing performance satisfying? What can we say about 
CWRs if the probing classifier does not perform “well”? 

• How to firmly attribute probing performance to CWRs and not to the probing 
model’s capacity? What is the influence of probing train and test data size?  

• Predictability of a property does not entail that the end-task model is using it. 
How to know when certain linguistic knowledge is utilized? 

• Should we repeat these analyses every time a new LM is released?
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Toward better probes 
— Control tasks (Hewitt and Liang, 2019)

Control tasks: tasks that can’t have been learned a priori by a representation, but 
can be learned by the probe through memorization 

• structure: the output for a word token is a deterministic function of the word type 

• randomness: the output for each word type is sampled independently at random
 no representation can have learned the task a priori

the probe itself can learn the task

Figure from https://nlp.stanford.edu/~johnhew/public/hewitt2019control_slides.pdf
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Toward better probes 
— Constructing a control task for POS tagging (Hewitt and Liang, 2019)
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 … vocabulary 
 … POS tagset 

1. Define control behavior  that 
randomly partitions vocabulary  into
categories, hence deterministically labels 
sentences by looking up a category for each word  

2. Train POS control model  
using the same architecture as for probing  

3. Compute selectivity: probe’s accuracy on the 
probing task minus its accuracy on the control task  

V
Y

C( ⋅ ) : V → Y,
V |Y |

fcontrol( ⋅ ) : X → C(V(X))

goal



What is next for NLP according to probing

1. What linguistic knowledge is guaranteed with pretrained LMs for end-tasks? 

2. What kind of linguistic knowledge available pretrained LMs are not predictive of? 
What are challenging tasks and datasets? 

3. What biases pretrained LMs capture? Can they be more transparent about them? 

4. Can we make pretrained LMs smaller, faster, and more energy-efficient?
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x

❌

Rogers et al, 2019; BERTology primer 

(for a moment)

?



Examining attention



Initial “hypothesis” in the words of John Hewitt:

“I think my representation learner unsupervisedly developed a notion of 
linguistic property Y, and encodes this notion in its intermediate representations 
in order to better perform the task it was trained on (like language modeling).”

hard to test directly
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visualize self-attention  
matrices as a proxy 



Figure from https://medium.com/@eruanna317/pandoras-box-2017-278cb0373cb8

Kovaleva et al.  Revealing the Dark Secrets of BERT. EMNLP 2019.
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I = (i1, . . . , i512) ∈ ℕ1 × max input length
0 = ℕ1×512

0  ... input vocab indices

BERT-Base forward pass  
— Input

T = lookup(WT, I) ∈ ℝmax input length × d = ℝ512×768 ... input token embeddings

X = T+WP ∈ ℝmax input length × d = ℝ512×768 ... input embeddings

Z0 = X
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trainable parameters

WT ∈ ℝvocab size × d = ℝvocab size × 768 ... token embeddings

WP ∈ ℝmax input length × d = ℝ512×768 ... positional embeddings



Qh,l = Zl−1WQ
h,l ∈ ℝmax input len × dq = ℝ512×64 ... query matrix

Kh,l = Zl−1WK
h,l ∈ ℝmax input len × dk = ℝ512×64 ... key matrix

Vh,l = Zl−1WV
h,l ∈ ℝmax input len × dk = ℝ512×64 ... value matrix

Ah,l = Softmax(
Qh,lKT

h,l

dk
) ∈ ℝmax input len × max input len = ℝ512×512

Zh,l = Ah,lVh,l ∈ ℝmax input len × dv = ℝ512×64

(Ah,l)i,j ... importance of the j-th word for the i-th word
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trainable parameters
output of the previous layer

BERT-Base forward pass  
— Self-attention layer

h ∈ {1,...,nheads}, nheads = 12

l ∈ {1,...,nlayers}, nlayers = 12



Z̃l = concat(Z1,l, . . . , Znheads,l) ∈ ℝmax input len × (dv⋅nheads) = ℝ512×(64⋅12) = ℝ512×768

Z̄l = LayerNorm(Zl−1+Z̃l) ∈ ℝ512×768

Zffnn
l = max(0, Z̄lW

ffnn
l + bffnn

l ) ∈ ℝmax input len × dffnn = ℝ512×3072

Zl = LayerNorm(Z̄l + Zout
l ) ∈ ℝ512×768

Zout
l = Zffnn

l Wout
l + bout

l ∈ ℝmax input len × d = ℝ512×768
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trainable parameters

l ∈ {1,...,nlayers}, nlayers = 12

output of the previous layer
BERT-Base forward pass  
— Layer normalization



Self-attention patterns 
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Ah,l = Softmax(
Qh,lKT

h,l

dk
) ∈ ℝmax input len × max input len = ℝ512×512

 for one sentence, not average;  unknownAh,l h, l

% estimated from a ConvNet that is trained on 
400 manually annotated attention heatmaps  



“Interpretable” attention heads 
— Relation-specific heads

average max absolute attention weight 
among FrameNet-annotated tokens

one random annotated FrameNet example

Voita et al, 2019:  
Layerwise Relevance Propagation (LRP) 

HEAD IMPORTANCE

Michel et al, 2019: 

Ih = 𝔼x∼X |Ah,l(x)T ∂ℒ(x)
∂Ah,l(x)

|
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“Interpretable” attention heads 
— Attention to linguistic features  

Hypothesis: task-finetuning of BERT creates patterns reflecting linguistic features, i.e. specific tokens 
get higher attention weights, producing vertical stripes on the corresponding attention maps

task-finetuning creates patterns associated with the [SEP] and [CLS] tokens 
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Attention probes

Reif et al, 2019

Instead of CWR(Obama, president), combine attention scores  (Ah,l)iObama,jpresident

37

Obama is the former president →  → {CWR(Obama), CWR(president)} 

CWR(Obama, president) = concatenate(CWR(Obama); CWR(president); CWR(Obama)  CWR(president)) 

CWR(Obama, president) →  →  coreferent

ℳLM

⊙

ℳprobe



Pruning attention heads 
— Michel et al, 2019; BERT for NLI

Ãh,l ∈ {0, Ah,l}

38

🤗 BERTology
https://huggingface.co/transformers/bertology.html



Pruning attention heads 
— Kovaleva et al, 2019; BERT for GLUE

Ah,l =
1

sentece length

39

performance while disabling 
one head at a time

performance while disabling 
one layer (12 heads) at a time



Pruning attention heads 
— Voita et al, 2019; Transformer for NMT
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Ãh,l = gh,l ⋅ Ah,l

gh,l ∈ ℝ ... a scalar gate independent of the input

L0(g1,1, . . . , gH,L) =
L

∑
l=1

H

∑
h=1

(1 − 𝕀[gh,l=0]) ... non-differentiable

LConcrete =
L

∑
l=1

H

∑
h=1

(1 − ℙ(gh,l = 0 |ϕi))

ϕi ... prameters of the Hard Concrete distribution
(stretch-and-rectify verision of the Gumbel softmax)

Maddison et al, 2017; Jang et al, 2017; Louizos et al, 2018

Probability density functions

L(θ, ϕ) = LNMT(θ, ϕ) + λLConcrete(ϕ) & reparametrization trick



Fixed attention heads 
— Raganato et al, 2019; Transformer for NMT
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Fixed attention patterns for the input “a master of science fic## tion .”

 i → 1.0

f(i) =
(i + 1)3

∑end
i=start (i + 1)3

i − 1 → 1.0 i + 1 → 1.0 f( j), j ∈ {0,...,i − 2} f( j), j ∈ {i + 2,...,n} f( j), j ∈ {0,...,n} f( j), j ∈ {n, . . . ,0}

 + a single 
learnable head 



Should attention be treated as justification 
for  a prediction?

Attention pitfalls

Serrano and Smith, 2019

Jain and Wallace, 2019

Wiegreffe and Pinter, 2019

Moradi et al,  2019

Zhong et al, 2019

NO 
- attention weights don’t correlate with leave-one-out methods 
-  alternative attention weights with near-identical predictions∃

MAYBE 
- adversarial attentions weights can be learned 
-  tests to determine when/whether attention can be used as an explanation  ∃

NO 
- analysis based on intermediate representation erasure shows 

that attention weights often fail to identify representations 
most important to the model’s final decision
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NO 
-  alternative attention 

weights with near-
identical predictions

∃

MAYBE 
- attention was often misaligned with the 

words that contribute to sentiment 
- attention trained with human rationales 

brings faithful explanations



Improving attention-based explanations 
— Brunner et al, 2020

E ... input embeddings
WV ... value weights matrix
V = EWV ... value matrix
T := EWVH

A = Softmax(
QKT

dk
)

AT ... output of a mult-head attention layer
rank(T) ≤ min(ds, dv)
LN(T) = {x̃ ∈ ℝ1×ds | x̃TT = 0}
ds = 512 ... input sequence length
dv = 64 ... dimension of value vector

dim(LN(T)) = ds − rank(T) ≥ ds − min(ds, dv) = {ds − dv, ds > dv

0, otherwise
∀Ã ∈ {[x̃1, . . . , x̃ds

] : x̃T
i ∈ LN(T)} ⇒ (Ã + A)T = AT ⇒ attention is not unique
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Improving attention-based explanations 
— Brunner et al, 2020

AT = (A|| + A⊥)T = A⊥T
A|| ∈ LN(T), A⊥ ∈ (LN(T))⊥

A⊥ = A − ProjectionLN(T)(A) ... effective attention

44

1. Make a QR decomposition of T;  is an orthogonal matrix,  is 
an upper triangular matrix 

2. An orthonormal set of basis vectors for  are the last  columns of Q; 
 is the rank of Q 

3. Project each row  

4.

Q ∈ ℝds×ds R ∈ ℝd×d

LN(TT) ds − r
r

ai ⇒ PLN(T)(ai) =
ds−r

∑
i=1

⟨ai, qr+i⟩qr+i

ProjectionLN(T)(A) = [P(a1), . . . , P(ads
)]T

not specified in the paper



Improving attention-based explanations 
— Brunner et al, 2020

attention patterns associated with the [SEP] and [CLS] tokens are less dominating 
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What is next for NLP according to attention

1. What linguistic knowledge is guaranteed with pretrained LMs for end-tasks? 

2. What kind of linguistic knowledge available pretrained LMs are not predictive of? 
What are challenging tasks and datasets? 

3. What biases pretrained LMs capture? Can they be more transparent about them? 

4. Can we make pretrained LMs smaller, faster, and more energy-efficient?
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❌

Rogers et al, 2019; BERTology primer 

(for a moment)

?
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