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The rise of contextualized word representations

Application of ML to text requires the conversion of words into a numerical form

— Word embeddings: dense high-dimensional vectors whose vicinity in a vector space correlates with their
association similarity (e.g. coffee—cup, car—-wheel)

— Pretrained word embeddings: taken “off-the-shelf” using a toolkit (e.g. word2vec) that derives them from another
ML model that is already unsupervisedly trained on large unlabeled corpora

Static word embeddings: a single word embedding for a given word, regardless of other words in a given sentence
— A word can contain a wide range of different meanings, depending on the context:
A. An A-to-Z guide on how you can use Google's Bert for binary text classification tasks with Python and Pytorch

B. In one sketch, Bert reads a book called Boring Stories and chuckles, "Wow! These boring stories are really
exciting!"



The rise of contextualized word representations

Bidirectional “masked” language models represent a given word dependent on the sequence of other
words in a given text, i.e. the context of the word

The shift to CWRs played a pivotal role in NLP
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New trend in NLP

examining which linguistic phenomena may or may not
be captured by pretrained language models
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What linguistic knowledge can be
taken for granted when we utilize
pretrained LMs for downstream tasks?

Are “pretrained language models and
massive compute” indeed all we need?

Sutton (2019); Brooks (2019)

a Thang Luong
@Imthang

A new era of NLP has just begun a few days ago: large
pretraining models (Transformer 24 layers, 1024 dim, 16
heads) + massive compute is all you need. BERT from

: SOTA results on everything

. Results on SQUAD are just
mind-blowing. Fun time ahead!

QuAD1.1 Leaderboard

Since the release of SQUAD1.0, the community has made rapid progress, with the best
models now rivaling human performance on the task. Here are the ExactMatch (EM)
and F1 scores evaluated on the test set of v1.1.

Rank Model
Human Performance
Rajpurkar et al. '16

BERT (ensemble)

BERT (single model)

ninet (ensemble)

ninet (ensemble)

QANet (ensemble)
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What kind of linguistic knowledge available pretrained LMs are
not predictive of?

What are challenging tasks and datasets?

. RYOU'CAN'T DO/IT WRONG

.

IF Nnmy KNOWS WHAT YOU'RE DOING
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Can we achieve competitive
performance with models that
derive word representations that
are more transparent about biases
they capture?

Zhao et al (2019); May et al (2019)

@ = TalLinzen
g @tallinzen

The bitter lesson: if we train them with 100x as many
GPUs on 100x as many words, our embeddings won't
have any bias!

. Jacob Eisenstein @jacobeisenstein - Mar 15, 2019
Replying to @jacobeisenstein @yoavgo and 2 others

In any case, the conclusion that "our embeddings are fine, they're a reflection
of the corpus, let's handle the problem downstream" seems to miss an
opportunity to do better, and to ask how far we can really get with frequency-
based distributional semantics.

4:37 PM - Mar 15, 2019 -
20 Likes

@) 0

=+ Tal Linzen @tallinzen - Mar 15, 2019
a ¥ Replying to
<« Snarkless version: it's a hard problem to figure out what exactly we want
statistical learners to do, and it's hard to figure out how put together the
training data and task formulation to get them to do that! We need domain
knowledge rather than compute for that!

O 1 n 2 Q 38




Oriol Vinyals @ @OriolVinyalsML - Feb 6, 2018 v
Evolution > RL (for now...) for architecture search. New SOTA on CIFAR10
(2.13% top 1) and ImageNet (3.8% top 5). @ 450 GPU / 7 days & 900
TPU /5 days &

Evol.
RL
A RS

Testing Acc

0.75 Billion FLOPs 1.35

Can we achieve competitive n o

David Pfau @pfau - Feb 6, 2018
(1) This still seems like insane ocean-boiling (2) Is this surprising? Isn't

p e rfo r m a n Ce W it h s m a I I e r' fa Ste r' "evolution > RL" another way of saying in a discrete, structured space

stochastic search will often outperform smooth relaxations?
n 2 QO 37

and energy-efficient models? :

David Pfau
@pfau

Replying to

Follow up: it is, in fact, insane ocean boiling

¥ Melody Guan $"="? @MelodyGuan - Feb 11, 2018

"Efficient Neural Architecture Search via Parameters Sharing"
arxiv.org/pdf/1802.03268... We reduce the computational requirement (GPU-
hrs) of standard Neural Architecture Search by 1000x via parameter sharing
between models that are subgraphs within a large computational graph (1/2)

Strubell et al (2019); Pham et al (2018); Li and Talwalkar (2018)



Analysis @ *ACL 2018-2019

. Linguistic probin
9 P J today: an overview of these approaches

o . . focused on English language
. Examining attention weights

. Challenge sets
. Adversarial examples

. Explaining predictions



Probing



Initial “hypothesis” in the words of John Hewitt:

“l think my representation learner unsupervisedly developed a notion of
linguistic property Y, and encodes this notion in its intermediate representations
in order to better perform the task it was trained on (like language modeling).”

hard to test directly

probing as a proxy
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Probing workflow

1. Freeze an already pretrained “masked” LM
2. Specify a linguistic property for testing the LM from Step 1
3. Define a probing task for assessing “understanding” of this linguistic property
4. Choose a simple probing model for solving the probing task
5. Collect (labelled) data for this model and make a train/test split
6. Pass the data from the previous step through the LM = CWRs are (some) LM’s hidden state activations
7. CWRs from the previous step or their combination are input features to the probing model from Step 4
8. Train the probing model = if its test performance is:
A."good" itis likely that CWRs are predictive of the linguistic property required for solving the probing task

B. otherwise, it is hard to draw firm conclusions and we can not be certain that the linguistic property is not
encoded in CWRs
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Step 1: Which pretrained “masked” LM?

® BERT (Coenen et al, 2019; Ettinger 2020; Goldberg 2019; Hewitt and Manning, 2019;
Jawahar et al, 2019; Kim et al, 2019; Kober et al, 2019; Lin et al, 2019; Liu et al, 2019;
Niven and Kao, 2019; Schwartz and Dagan, 2019; Tenney et al, 2019a, 2019b)

® ELMo (Kober et al, 2019; Liu et al, 2019; Peters et al, 2018; Perone et al, 2018;
Schwartz and Dagan, 2019; Tenney et al, 2019a)

® GPT (Liu et al, 2019; Schwartz and Dagan, 2019; Tenney et al, 2019%a)

® CoVe (Tenney et al, 2019a; Zhang and Bowman, 2019)

among others
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Step 2-3: Which property and task?

Downstream vs probing tasks: former are too complex to firmly say what linguistic
information captured by CWRs was necessary to solve them

Categories of probing tasks:
® Token labeling
® Segmentation
® Pairwise labeling
® Span labeling

® Structure prediction
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Example: Token labeling

Property: basic syntax

M

p

My .. frozen LM

robe -

. trainable probing model

Task: POS tagging; label a word in a given sentence with its Part-Of-Speech tag, e.g. noun, verb, adjective, etc.

Input sentence: "Vinken, 61 years old”

:67 - CWR(é1) = A ,,,,, = CD (cardinal number)

years = CWR (years) = M ,,,,, = NNS (noun, plural)

old = CWR(old) = ,,,,, = JJ (adjective)

Vinken = CWR(Vinken) = ./ ,,,,, = NNP (proper noun, singular)

Vinken, 61 years old = ./ ;,, = {CWR(Vinken), CWR(6 1), CWR(years), CWR(old)}
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Example: Segmentation

Property: spans and boundaries

Task: chunking; divide a text in syntactically correlated parts using the BIO notation

Input sentence: “He reckons the current account deficit will narrow”

He = CWR(He) = ./ ,,,,, = B-NP (beginning of a noun phrase)
reckons =+ CWR(reckons) — ﬂpmbe — B-VP (beginning of a verb phrase)

the = CWR (the) — ./,,,,, = B-NP

current = CWR(current) = ./ ,,,,,, = I-NP (inside a noun phrase)

He reckons the current account deficit will narrow = % ,, = {CWR(He), CWR(reckons), ..

}
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Example: Pairwise labeling

Property: coreferential links between entities in the same sentence

Task: intra-sentence coreferential link prediction; given two entities in a given sentence, predict whether

they are coreferent

Input sentence: “Obama is the former president”

Obama is the former president = /; ,, = {CWR(Obama), CWR(president)}

CWR(Obama, president) = concatenate(CWR(Obama); CWR(president); CWR(Obama) ® CWR(president))

CWR(Obama, president) = M ,,,,, = coreferent
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Example: Span labeling

Property: constituent types

Task: constituent labeling; label a span of tokens within the phrase-structure parse of the sentence

Input sentence: “The important thing about Disney is that it is a global brand.”

The important thing about Disney is that it is a global brand. = /;,, & {CWR(The), CWR(important), ...} |

CWR(is a global brand) = concat(CWR(is); CWR(brand); CWR(is) © CWR(brand); CWR(is)-CWR(brand))

' CWR(is a global brand) — ﬂpmbe — VP (verb phrase)
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Example: Structure prediction o

the
/ chef
o fqod
Property: 37 linear transformation of the CWR-space under which | N A
vector distance encodes parse trees .
¢ o’
to’ ! :
. 7 of
Task: reconstructing parse trees whd /7
Y was
. . Thé
1. Learn a linear transformation of the CWR-space s.t. the squared
distance between transformed word vectors correlates with the Hewitt and Manning (2019)

path length in the dependency parse tree between them

2. Compute the distance between each word pair using their
transformed vector representations

3. From the predicted parse tree distances compute the minimum
spanning tree

19 Figure from https://nlp.stanford.edu//~johnhew/structural-probe.html




Step 4: Which probing model?
Probing models have to simple enough so that we can attribute their performance
to CWRs and not to the capacity of the model

Popular probing models: linear model (e.g. Liu et al, 2019), one-layer FFNN (e.g.
Perone et al, 2018), two-layer FFNN (e.g. Tenney et al, 2019%a)

Linear models are simple enough, but a non-linear combination of dimensions in a
CWR might be predictive of a given linguistic property

Even a single-layer FFNN can be potentially have large capacity (hint: universal
approximation theorem)
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Step 5: Which probing data?

Use available annotations: Penn Treebank (PTB), Universal Dependencies English
Web Treebank (UD-EWT), CCGbank, data of CoNLL shared tasks, STREUSLE, UDS,...

= More studies devoted to syntactic than semantic phenomena due to available data

Create data: Diverse Natural Language Inference Collection (DNC; Poliak et al,
2018; Kim et al, 2019)

Low vs high-resource: rarely discussed; related to the discussion on the previous slide

21



Step 6: Which activations?

Hidden activations at each layer (e.g. Peters et al, 2018, Liu et al, 2019)

Scalar mix of hidden activations at each layer (e.g. Liu et al, 2019, Shwartz and
Dagan, 2019)

Hidden activations of the final-layer before the classification layer (e.g. Peters et al,
2018, Shwartz and Dagan, 2019)

22



Step 7: What is a "good” performance?

Current approach
® Compare to the state of the art when possible (e.g. for PoS tagging)
® Otherwise, researchers’ intuition
(/
Do we need a more systematic approach?
® 90+ — predictive; 80-90 — possibly predictive; <80 — unknown ;?
Fair comparison of different LMs (without re-training) is hard

Comparison with random word representations (Zhang and Bowman, 2018; Conneau et al, 2018)

23



Probing pitfalls

® \What is the definition of encoding/capturing/being predictive of a linguistic
property? When is the probing performance satisfying? What can we say about
CWRs if the probing classifier does not perform “well”?

@ow to firmly attribute probing performance to CWRs and not to the probing
model’s capacity? What is the influence of probing train and test data size?

® Predictability of a property does not entail that the end-task model is using it.
How to know when certain linguistic knowledge is utilized?

® Should we repeat these analyses every time a new LM is released?

24



Toward better probes
— Control tasks (Hewitt and Liang, 2019)

Family: Multi-Layer Perceptrons

.......

e,
N
---------------
.............
.

Control tasks: tasks that can't have been learned a priori by a representation, but
can be learned by the probe through memorization

® structure: the output for a word token is a deterministic function of the word type
\§*the probe itself can learn the task

® randomness: the output for each word type is sampled independently at random

> no representation can have learned the task a priori

Figure from https://nlp.stanford.edu/~johnhew/public/hewitt2019control_slides.pdf

25



Toward better probes

— Constructing a control task for POS tagging (Hewitt and Liang, 2019)

V ... vocabulary
Y ... POS tagset

1. Define control behavior C(-): V — Y, that

randomly partitions vocabulary Vinto| Y|
categories, hence deterministically labels
sentences by looking up a category for each word

2. Train POS control modelf, ,,..,(-) : X = C(V(X))

using the same architecture as for probing

3. Compute selectivity: probe’s accuracy on the
probing task minus its accuracy on the control task

26
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What is next for NLP according to probing

(for a moment)

Rogers et al, 2019; BERTology primer

.3What linguistic knowledge is guaranteed with pretrained LMs for end-tasks?

. JWhat kind of linguistic knowledge available pretrained LMs are not predictive of?
What are challenging tasks and datasets?

?3. What biases pretrained LMs capture? Can they be more transparent about them?

x4. Can we make pretrained LMs smaller, faster, and more energy-efficient?

27



Examining attention



Initial “hypothesis” in the words of John Hewitt:

“l think my representation learner unsupervisedly developed a notion of
linguistic property Y, and encodes this notion in its intermediate representations
in order to better perform the task it was trained on (like language modeling).”

hard to test directly

visualize self-attention
matrices as a proxy

29



T

Kovaleva et al. Revealing the Dark Secrets of BERT. EMNLP 2019.

30



BERT-Base forward pass trainable parameters
— Input

W, € Rvocab size xd _ Rvocab size x 768 token embeddings

W, e RmMaxinput length xd _ 512x768 1 sitional embeddings

1 x max input length _ N1><512

I'=(i,...,I55) €Nj ... input vocab indices

= lookup(Wy, I) € RMax input length xa _ p512x768 .input token embeddings

X = T+Wp Rmax mput |ength Xd _ R512X768 input embeddings

31



BERT-Base forward pass trainable parameters

. output of the previous layer
— Self-attention layer P P y

0,,= ZZ—IWhQZ c RMax input len x d, _ @si2xe4 query matrix
K, =7, WK € RMaX input len xd, _ p@5i2x64 key matrix
Vi =2_,W)/, € RMax input len xd, — RSI12x64 _ yalue matrix

Q01,1 Ki, i -
Aj; = Softmax(——=) € rMaxinput len x maxinput len _ p512x512

dy

§ 1€ {l,...nheads)h "heads
I e {l,..,

(Ay.p); --- importance of the j-th word for the i-th word _

Mayers s Mayers =

_ max input len x d, _ pp512x64
Zp1=ApViy €R P =R
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BERT-Base forward pass trainable parameters

o output of the previous layer
— Layer normalization

5 max input len x (,-
Z,=concat(Z,,...,Z, )ER P X i gads) = R312x(64:12) — [512x768

Zl = LayerNorm(Zl_1+Zl) = R512X768

Zifn _ max(0 Zlefnn n bffnn) c RMax input len x d,, _ R512x3072
1 ’ ! !

Zlout — Z{fnnvvlout + blout = Rmax input len x 4 — R512X768

Z, = LayerNorm(Z, + Z*") € R>12x768

L e {1,

nlayers}’ Mayers = ]

33



Self-attention patterns
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“Interpretable” attention heads

— Relation-specific heads HEAD IMPORTANCE

average max absolute attention weight
24 among FrameNet-annotated tokens
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“Interpretable” attention heads
— Attention to linguistic features

Hypothesis: task-finetuning of BERT creates patterns reflecting linguistic features, i.e. specific tokens
get higher attention weights, producing vertical stripes on the corresponding attention maps

x task-finetuning creates patterns associated with the [SEf] and [C!.S] tokens

Layer
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m GB
| = ' e B .
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Attention probes

Obama is the former president = /; ,;, = {CWR(Obama), CWR(president)}
CWR(Obama, president) = concatenate(CWR(Obama); CWR(president); CWR(Obama) ® CWR(president))

CWR(Obama, president) =

probe —* coreferent

Instead of CWR(Obama, president), combine attention scores (Ah,l)iozmma, Jovesiden

dog

[sspi .

Asingle attention head

LI | W ]

12 Iayers 12 layers X 12 heads = 144 dimensional attention vector Reif et al, 2019

37



Pruning attention heads
— Michel et al, 2019; BERT for NLI

Ah,l € {0,4,,}

Baseline ]
accuracy I
40 1 I
0 30 T
o
o]
)
=
=20
10 A
— | : :
0.824 0.826 0.828 0.830 0.832 0.834 0.836 0.838

Accurac
' @ BERTology

https://huggingface.co/transformers/bertology.html
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Pruning attention heads
— Kovaleva et al, 2019; BERT for GLUE

1

sentece Iength

Ah,l =

MRPC

performance while disabling
one head at a time

12 ] [ b
123456789101112 1234567809101112 1234567809101112 1234567809101112 1234567 89101112 1234567809101112 12345678 9101112
Head Head Head Head Head Head Head
S — o e - o . b
© =] ey o N ] @ =3 oS © © ] N ~ @ ] @9 @ © > © 3 ~ =] ® o~ 2 3 S o
= ] ] ] S 2 < < S o = =1 = S [N = s 2 Q@ @ = < =1 S = = =R 9] ] %] 3
< ] ] < 8 Q < < ) Q& > > o R < < < < 1 r 1) ) & ] > > S @ < < < <
=] =] =] =] ER=] =] =] =] S o = =] =] S o =] =] =] oo =] =] = oo = =] = S o =] =] =] =]

STS-B g QQP

0.887 0.890 .922 0.882 0.617 0.914 I 0.839
1 1 1 1
I 2 2 2 2 2
3 3 3 3 3 3

0.879 0.887 0.918 0.876 0.606 0.892 0.831
4 4 . 4 4 4 4
5 5 5 5 5 5
H H H 6 6 6 6 6 6 6

performance while disabling
7 7 7 7 7 7 7

)

one layer (12 heads) at a time . . . . . . .
9 9 9 . 9 9 9 9

0.863 0.881 0.910 0.863 0.585 0.849 0.815
10 10 10 10 10 10 10

11 11 1 1 11 1 11
12 12 12 12 12 12 12
0.854 0.878 0.906 0.857 0.574 0.828 0.807
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Pruning attention heads
— Voita et al, 2019; Transformer for NMT

25 concrete vs hard concrete 12 Hard concrete with different parameters
concrete — p(0) =0.23, p(1)=0.23
—— hard concrete, p(0)=0.23, p(1)=0.23 1.0 p(0) = 0.04, p(1) =0.69
B 2.0 : —— p(0) =0.86, p(1)=0.01 /’
Apr = 81 Ani 08

1.5

gn; € R ... a scalar gate independent of the input

L H 1.0 04
Lo(g115--+58nr) = 2 Z (1 = I, =op) - non-differentiable 05 w o

p(z)
p(2)
o
[}

=1 h=1
H 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0
Leonerore = Z Z (1- I]:D(gh,l =0|¢,)) Probability density functions
=1 h=1 ,
WMT OpenSubtitles
@; ... prameters of the Hard Concrete distribution 29.751 3.4 P
(stretch-and-rectify verision of the Gumbel softmax) iz'z:' 32.2.
o7
| 32.01
1 29.00
@0 28.75 1 31.81
L0, §) = Lyyr(0, d) + AL yperere(P) & reparametrization trick 28.501 31.6
28.251 &
48 35 19 1052 48 30 17 9 41
Retained heads Retained heads

Maddison et al, 2017; Jang et al, 2017; Louizos et al, 2018
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Fixed attention heads
— Raganato et al, 2019; Transformer for NMT

i— 1.0 i—1-1.0
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Fixed attention patterns for the input “a master of science fic## tion .
20

41 15

i+ 1= 1.0 f).je(0.i=2} f().j€li+2..n} f(j).j € {0,.n)

G+ 13

fi) = ——
2 G+ 1P

fG).j € fn,....0}

+ a single
learnable head

—— All learned
—a— Fixed (word-based)

EN-DE —o— Fixed (token-based)
—+— Single-head learned
1+1 241 341 4+1 541 641 646



Attention pitfalls

Wiegreffe and Pinter, 2019

- adversarial attentions weights can be learned

Jain and Wallace, 2019 - Jtests to determine when/whether attention can be used as an explanation

NO
- attention weights don't correlate with leave-one-out methods
- dalternative attention weights with near-identical predictions

Moradi et al, 2019
NO
- Jalternative attention
weights with near-
identical predictions

Should attention be treated as justification

for a prediction?

Serrano and Smith, 2019 Zhong et al, 2019

NO

- analysis based on intermediate representation erasure shows
that attention weights often fail to identify representations
most important to the model’s final decision

- attention was often misaligned with the
words that contribute to sentiment
- attention trained with human rationales

brings faithful explanations
42



Improving attention-based explanations
— Brunner et al, 2020

E ...input embeddings
WV ... value weights matrix

V =EW" ...value matrix
T:=EWVH

KT
A= Softmax(Q
dy

)

AT ... output of a mult-head attention layer
rank(T) < min(d,, d,)

LN(T) = {% € R™>4%|3TT = 0)

d, = 512 ... input sequence length

d, = 64 ... dimension of value vector

. . d,—d,d; > d,
dim(LN(T)) = d,; — rank(T') > d;, — min(d,, d,) = .
0, otherwise

VA € {[%, ... 2 Xq] JZZT e LN(T)} = (A + A)T = AT = attention is not unique
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Improving attention-based explanations
— Brunner et al, 2020

AT = A+ AHT = ALT
All € LIN(T), AL € (LN(T))*:

At = A — Projection A) ... effective attention

LN(T)(

not specified in the paper

&/
1. Make a QR decomposition of T; Q € R%%4s is an orthogonal matrix, R € R4%d jg

an upper triangular matrix
2. An orthonormal set of basis vectors for LN(77) are the last d, — r columns of Q;

ris the rank of Q
ds_r
3. Project each row a; = Ppyr\(a) = Z (s Q1) Gy
i=1
4. ProjectionLN(T)(A) = [P(ay), ... ,P(ads)]T
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Improving attention-based explanations
— Brunner et al, 2020

Raw Attention

1 _
—~ [ ]
-2 0.8 %
§ ‘.'o
S 0.6 .
A e’
0.4 | : '51
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Effective Attention

e [CLS]
o [SEP]
e.0l,

Layer

attention patterns associated with the [SEP] and [CLS] tokens are less dominating



What is next for NLP according to attention

(for a moment)

Rogers et al, 2019; BERTology primer

.3What linguistic knowledge is guaranteed with pretrained LMs for end-tasks?

. JWhat kind of linguistic knowledge available pretrained LMs are not predictive of?
What are challenging tasks and datasets?

? 3. What biases pretrained LMs capture? Can they be more transparent about them?

+

@Can we make pretrained LMs smaller, faster, and more energy-efficient?
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