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University of Utah
Kahlert School of Computing
{purbid.bambroo,daniel.s.brown,ana.marasovic}@utah.edu

Abstract

Reward models are central to post-training alignment of large language
models (LLMs) via human preferences. As reward benchmarks gain promi-
nence, it becomes critical to evaluate their integrity. A key challenge that
remains underexplored in this space is the identification of redundant ex-
amples in these evaluation datasets. These are preference pairs that enforce
near-duplicate or redundant half-space constraints on the reward-model
weight vector and hence may inflate or exaggerate the perceived alignment
of a reward model. In this work, we propose a novel method, CONECUT, to
identify redundancy in preference alignment datasets by formulating this
task as a cone membership test over a reward model’s hidden representa-
tions. Our experiments on RewardBench reveal that a substantial fraction of
examples in evaluation pairs are near redundant, and pruning them results
in measurable performance drops across multiple reward models. Our
work highlights the overestimation of alignment that evaluation datasets
might cause in socially critical areas like refusals and safety. We advocate
for redundancy-aware evaluation as a step toward better model alignment
and curating socially responsible evaluation datasets.

1 Introduction

Preference alignment (Ziegler et al., 2020; Bai et al., 2022b; Liu et al., 2024b) is a critical final
stage when training modern large language models (LLMs) to avoid toxic or unsafe content
generation (OpenAI, 2023; Anthropic, 2023; Touvron et al., 2023, among others). Central to
this alignment process are reward models that learn to score model outputs according to
human preferences and steer LLMs toward responses that are both helpful and harmless.

However, reward models are imperfect. They frequently overfit to superficial shortcuts that
enable reward hacking (Tien et al., 2023), become biased toward the specific preferences of
their human annotators (Bai et al., 2022b; Casper et al., 2023), and exhibit excessive caution
that leads to unnecessary refusal behaviors (Bai et al., 2022b; Dabas et al., 2025). Given
these limitations and the critical role reward models play in ensuring safe LLM deployment,
it is important to develop robust methods to scrutinize their reliability. Recently, reward
benchmarks that test reward model alignment have been proposed (Lambert et al., 2024).
However, while such benchmarks represent important progress, it is important that these
benchmarks comprehensively measure alignment rather than only test a few areas that a
preference-aligned model has already mastered. Otherwise, the model’s performance may
appear artificially inflated regardless of how many examples the benchmark contains.

Motivated by this concern and building on the approach proposed by Brown et al. (2020)
for alignment verification, we introduce CONECUT, a novel cone-membership test that
seeks to detect and prune redundancy in preference datasets for reward model evaluations.
We apply CONECUT to RewardBench (Lambert et al., 2024), and show that a significant
portion of data, particularly in subsets like safety and reasoning, is near redundant. In
particular, in one CONECUT setting, we find that 23.8% of the data is near redundant or
redundant, with model performance dropping as much as 3% on the overall dataset and
up to 13.98% on individual subsets, when evaluated on minimal non-redundant subsets.
In the context of preference alignment, even modest accuracy decreases are particularly
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concerning given their direct impact on safety assessment. We expect that CONECUT can
enable and accelerate the development of more rigorous reward benchmarks by guiding the
creation of less redundant tests of preference alignment and pruning current benchmarks to
focus on their most informative examples.

2 Related work

Reward models are a core component of alignment techniques such as Reinforcement
Learning from Human Feedback (RLHF) (Christiano et al., 2017; Bai et al., 2022a). Reward
models for LLMs are typically also LLMs finetuned on human-labeled preference pairs,
where one completion is more favored than the other, given a prompt. The scores from the
trained reward model are then used to guide further model training, typically via policy
optimization, to produce outputs that better align with human values such as helpfulness,
safety, and ethics. To evaluate these reward models, the most widely used benchmark
is RewardBench (Lambert et al., 2024), which includes 2,985 preference pairs across four
categories: chat, chat-hard, safety, and reasoning. Other recent benchmarks for evaluating
reward models include RM-Bench (Liu et al., 2024c), which tests sensitivity to subtle content
changes and style bias; VLRewardBench (Li et al., 2025), which extends reward modeling to
vision-language generation tasks; and ProcessBench (Zheng et al., 2025), which provides
step-level supervision for mathematical reasoning tasks. We chose RewardBench because of
the wide range of topics covered and the extensive community interest in this benchmark,
as shown by the large number of submissions on the leaderboard.1

Naturally, the quality and diversity of these evaluation sets influence how well reward
models seem to align with human judgment. Prior work has shown that redundancy in
these preference pairs can lead to incorrect evaluations of model safety and reliability (Zhang
et al., 2025) and having “approximate clones” in a dataset can lead to reward inflation by
skewing the MLE reward scores (Procaccia et al., 2025). These works highlight the need to
inspect reward benchmarks for performance leakage and accuracy inflation, particularly
when subsets like safety are involved. In our work, we focus on dataset redundancy.
Lee et al. (2022) find that removing exact redundancies helps training efficiency. Our
work studies the complementary idea of removing redundancies for better evaluation
purposes, and our approach generalizes beyond exact duplication detection. While we
draw conceptually from Brown et al. (2020), our setting is substantially different. Their
work involves formulating alignment as a test of behavioral compatibility using preferences,
value queries, or trajectories across low-dimensional MDPs. In contrast, our work focuses
on evaluation dataset pruning for LLM reward model benchmarks like RewardBench. To
the best of our knowledge CONECUT is the first work that applies geometric redundancy
detection on reward model evaluation datasets and successfully detects a significant drop
in accuracy on the non-redundant preference pairs, across models.

3 Problem formulation

We consider a preference alignment dataset D = {(pi, ci, ri)}N
i=1 used in reward model

training. Each ordered triple indicates that humans prefer the model completion ci over ri
for the input prompt pi. Thus, each preference triple enforces a requirement on the reward
model to score ci higher than ri, which can be viewed as a constraint on the model’s behavior.
Given a preference alignment dataset D, we seek to prune redundant preferences to find
a minimal set of pairwise preference data that best captures the underlying alignment
constraints in D.

We can denote the reward model as Rw, where w ∈ RD are the weights of the linear reward
head. We assume that if a user prefers ci over ri given prompt pi, then Rw should satisfy
Rw(pi, ci) > Rw(pi, ri). While reward models are usually complex functions of the input,
they are often finetuned from a pretrained language model using a reward head that maps
the last decoder hidden state before next token prediction to a scalar reward output. Thus,
we can treat them as linear functions of the final hidden state, which we denote by ϕ(x, y)

1https://huggingface.co/spaces/allenai/reward-bench
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for input x and generation y. Viewing reward models in this way facilitates reasoning about
the constraints imposed by each pairwise preference. Following prior work by Brown et al.
(2020), we rewrite the last inequality using the weights w and features ϕ, to show that each
pairwise preference (pi, ci, ri) induces the following linear constraint on the reward weights:

w⊤ [ϕ(pi, ci)− ϕ(pi, ri)] > 0 . (1)

The above inequality defines an open half-space:

Hi :=
{

w ∈ RD : w⊤xi > 0
}

, xi := ϕ(pi, ci)− ϕ(pi, ri), (2)

that separates weight vectors that score the preferred completion higher from the rejected
completions. Intersecting all such half-spaces yields the feasible region of the reward model
weights that align with the human preferences contained in D:

F (X) := {w ∈ RD : w⊤xk > 0, ∀k}, (3)
where X = {x1, . . . , xN} represents all preference constraints derived from the dataset D.
We can now formally define a redundant pairwise preference, (pi, ci, ri), as one that induces a
constraint w⊤xi that, if removed from F (X), does not change the intersecting half space of
feasible rewards that align with human preferences, i.e.,

{w ∈ RD : w⊤xk > 0, ∀k ̸= i} = F (X). (4)
Next, we discuss several methods for finding such redundancies in a preference dataset.

4 Background: Redundancy detection via linear programming

Our approach draws from prior works in AI safety, particularly Brown et al. (2020), which
addresses value alignment verification in reinforcement learning by proposing a theoretical
approach for alignment testing to ensure an agent’s policy satisfies constraints derived
from human preferences. To remove redundancy, they use an approach based on linear
programming (LP) as described below.

Following Telgen (1983), determining whether a preference (pi, ci, ri) is redundant according
to the definition (4) is equivalent to finding the smallest value w⊤xi can take, under the
constraint that w satisfies all other inequalities (i.e., aligns with all other preferences in D):

min
w

w⊤xi s.t. w⊤xk ≥ 0, ∀k ̸= i . (5)

If w⊤
∗ xi ≥ 0, where w∗ is the solution to (5), then preference (pi, ci, ri) (corresponding to

the half-space normal vector xi = ϕ(pi, ci) − ϕ(pi, ri)) is redundant since even without
enforcing w⊤xi ≥ 0, any solution w that satisfies all other constraints will automatically
satisfy this constraint.

Brown et al. (2020) apply this test to create non-redundant preference tests for verifying
alignment. However, applying this test to a dataset with N preference pairs requires solving
N such LPs. Brown et al. (2020) only consider low-dimensional problems with embedding
size D < 6 and tens of preference queries; however, directly applying this approach to LLMs
is intractable since the last decoder head usually has at least several hundred dimensions,
and reward models for LLMs are usually evaluated on hundreds or thousands of pairwise
preferences.

5 CONECUT: Cone membership test for preference redundancy

To address the scalability challenges, we propose a more tractable test for redundancy based
on cone membership. Let X ∈ RN×D be the matrix whose rows are vectors xi induced by each
pairwise preference in the dataset D. We now define a preference (pi, ci, ri) as redundant if
and only if its corresponding half-space normal vector xi = ϕ(pi, ci)− ϕ(pi, ri) lies in the
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cone generated by the remaining rows of X:2

xi ∈ C(X−i) :=
{

∑
k ̸=i

αk xk, αk ≥ 0
}

. (6)

However, exact duplicates of preference pairs are rare in real-world datasets because of
annotator noise, paraphrasing, and representation drift (Shen et al., 2024; Deng et al., 2025;
Tan et al., 2025). We thus define a preference pair as ε-redundant if xi can be approximated
within an error margin ε by the cone C(X−i). We implement this using Non-Negative Least
Squares (NNLS; Lawson & Hanson, 1995), solving:

ri = min
ak≥0

∥∥∥∥∥xi − ∑
k ̸=i

akxk

∥∥∥∥∥
2

R2
i = 1 −

∥xi − ri∥2
2

∥xi∥2
2

, (7)

where ri is the residual and R2 the coefficient of determination, which quantifies approxima-
tion quality. We retain xi as a non-redundant constraint only if R2

i < ε where we consider
the thresholds ε ∈ {0.95, 0.9}. We choose these thresholds empirically to ensure practical
applicability in high-dimensional settings; see more details in Appendix B. The exact LP ap-
proach used in prior work (Brown et al., 2020) requires O(ND3) time (N = 2,985, D = 4,096
in RewardBench with reward models we study), whereas NNLS costs O(ND2). In practice,
we use SciPy’s nnls which yields ≈ 103× speed-up and enables us to scale preference
redundancy detection to modern LLMs.

6 Experiments

In this section, we detail our experiments assessing the impact of redundancy in preference
test sets on reward model performance, focusing on RewardBench (Lambert et al., 2024).

6.1 Experimental setup

Dataset. RewardBench is a comprehensive benchmark used to evaluate reward model
performance on human preference pairs. It consists of 2,985 examples across 4 data subsets:
chat (358), chat-hard (456), safety (740), and reasoning (1431). The chat subset tests
conversational abilities, the safety subset assesses alignment with human-described safe
behaviors like refusals to dangerous and offensive responses, and the reasoning subset
evaluates logical and problem-solving skills.

Feature extractor. To determine which preferences are ε-redundant, we use embeddings
ϕ from the penultimate layer in ShikaiChen/LDL-Reward-Gemma-2-27B-v0.1 in Hugging-
face — one of the top models on the RewardBench leaderboard. We use the standard chat
prompt template used in RewardBench and use the last token representation as the feature
representation.

Settings. We test a range of reward models submitted to RewardBench under four condi-
tions: (1) Full Dataset: Accuracy on the entire RewardBench dataset; (2) Redundant Subset:
Accuracy on pairs identified as ε-redundant with NNLS from the LDL Reward Gemma
model; (3) Non-Redundant Subset: Accuracy on pairs not marked as redundant; and (4)
Random Reduced Dataset: Accuracy on a test set where a random subset of pairs (same size as
the redundant set) is removed. By evaluating performance across these conditions, we iso-
late the impact of ε-redundancy, hypothesizing that redundant pairs inflate the benchmark
accuracy, particularly in safety and reasoning subsets, due to overrepresented patterns.

Models. We benchmark eight open–source reward models that currently appear on
the RewardBench leaderboard: GRM-Llama-3.2-3B and GRM-Llama-3-8B (Yang et al.,
2024), LDL Reward Gemma-27B, QRM Llama-3.1-8B (Dorka, 2024), Llama-3 OffsetBias-8B
(Park et al., 2024), Skywork-Reward-Llama-3.1-8B-v0 and v0.2 (Liu et al., 2024a), and
InternLM-2-7B-Reward (Cai et al., 2024). Model details are provided in Appendix C.

2A proof of the equivalence “redundancy ⇐⇒ cone membership” is provided in Appendix A.

4

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://huggingface.co/
https://huggingface.co/


Published as a paper at SoLaR 2025 (COLM Workshop)

Subset Model Full Acc. Non-Red. Acc. Red. Acc. Rand. Acc.

chat
(5.59%)

GRM-llama3.2-3B-rewardmodel-ft 91.62 91.12 100.00 91.42
GRM-llama3-8B-distill 98.32 98.22 100.00 98.22
LDL-Reward-Gemma-2-27B-v0.1 96.37 96.15 100.00 96.15
Llama-3-OffsetBias-RM-8B 97.21 97.04 100.00 97.04
QRM-Llama3.1-8B-v2 96.65 96.45 100.00 96.45
Skywork-Reward-Llama-3.1-8B-v0.2 94.69 94.38 100.00 94.38
Skywork-Reward-Llama-3.1-8B 95.81 95.56 100.00 95.56
internlm2-7b-reward 99.44 99.41 100.00 99.41

Average 96.26 96.04 100.00 96.08

chat-hard
(4.39%)

GRM-llama3.2-3B-rewardmodel-ft 84.43 83.72 100.00 84.40
GRM-llama3-8B-distill 68.20 67.66 80.00 67.66
LDL-Reward-Gemma-2-27B-v0.1 90.57 90.14 100.00 90.83
Llama-3-OffsetBias-RM-8B 82.02 81.65 90.00 81.88
QRM-Llama3.1-8B-v2 86.84 86.24 100.00 86.70
Skywork-Reward-Llama-3.1-8B-v0.2 88.38 87.84 100.00 88.30
Skywork-Reward-Llama-3.1-8B 87.06 86.47 100.00 86.93
internlm2-7b-reward 71.05 70.18 90.00 70.64

Average 82.32 81.74 95.00 82.17

safety
(43.51%)

GRM-llama3.2-3B-rewardmodel-ft 92.57 86.71 100.00 92.03
GRM-llama3-8B-distill 86.49 77.05 98.47 85.75
LDL-Reward-Gemma-2-27B-v0.1 93.65 88.65 100.00 93.00
Llama-3-OffsetBias-RM-8B 87.03 77.78 98.77 86.47
QRM-Llama3.1-8B-v2 92.70 86.96 100.00 92.75
Skywork-Reward-Llama-3.1-8B-v0.2 92.70 86.96 100.00 92.51
Skywork-Reward-Llama-3.1-8B 90.95 83.82 100.00 89.86
internlm2-7b-reward 87.43 73.45 96.44 88.62

Average 90.44 82.67 99.21 90.12

reasoning
(24.39%)

GRM-llama3.2-3B-rewardmodel-ft 94.20 92.88 98.28 94.09
GRM-llama3-8B-distill 91.35 89.30 98.14 91.14
LDL-Reward-Gemma-2-27B-v0.1 98.85 97.69 100.00 98.34
Llama-3-OffsetBias-RM-8B 91.95 90.02 99.14 91.35
QRM-Llama3.1-8B-v2 96.09 94.92 99.71 96.03
Skywork-Reward-Llama-3.1-8B-v0.2 96.66 95.42 100.00 96.43
Skywork-Reward-Llama-3.1-8B 96.27 94.55 100.00 96.46
internlm2-7b-reward 94.64 93.81 98.85 94.40

Average 95.00 93.57 99.27 94.78

Table 1: Reward model accuracies for RewardBench across full, non-redundant, redundant,
and randomly sampled subsets. Redundancy is determined using CONECUT with ε = 0.95.

6.2 Results

Table 1 and Table 2 shows our results for ε = 0.95 and ε = 0.9, respectively. The first column
in both the tables shows the percentage of redundant examples based on the ε-redundancy
found in different subsets of RewardBench, which are substantial for the safety (43.5% &
60.8% redundancy) and reasoning (24.4% & 59% redundancy) data subsets. See Table 3
(Appendix) for absolute counts.

We hypothesize that redundancy is more pronounced in safety because preferred comple-
tions refuse to complete a dangerous or harmful prompt, and respond with a similar set of
sentences like “I’m sorry, but I cannot fulfill that request. It goes against my values to promote
harmful...” and “...If you have any other inquiries or topics you’d like to discuss, feel free to let me
know...”.

All models across all subsets show a drop in accuracy when reported on the non-redundant
set and a close to 100% accuracy on the redundant set. In low-redundancy domains like
chat, most models show negligible differences across subsets. However, in subsets with
significant redundancy, safety (43.5% & 60.8%) and reasoning (24.4% & 59%), some models
such as LDL-Reward-Gemma and Llama-3 variants achieve perfect or near-perfect scores
on redundant pairs while dropping by up to 10 percentage points on the non-redundant
ones. The drop is more notable in a non-redundant set found with CONECUT than on a
randomly sampled one. This reveals that redundancy can mask real weaknesses and inflate
performance if not accounted for, and provides evidence that CONECUT can be used as a
tool to better scrutinize and assess the true performance and alignment of reward models.
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Subset Model Full Acc. Non-Red. Acc. Red. Acc. Rand. Acc.

chat
(25.4%)

GRM-llama3.2-3B-rewardmodel-ft 91.62 89.1 98.9 91.0
GRM-llama3-8B-distill 98.32 97.8 100.0 98.5
LDL-Reward-Gemma-2-27B-v0.1 96.37 95.1 100.0 97.0
Llama-3-OffsetBias-RM-8B 97.21 96.6 98.9 96.6
QRM-Llama3.1-8B-v2 96.65 95.5 100.0 96.6
Skywork-Reward-Llama-3.1-8B-v0.2 94.69 93.3 98.9 95.5
Skywork-Reward-Llama-3.1-8B 95.81 94.4 100.0 95.9
internlm2-7b-reward 99.44 99.3 100.0 99.6

Average 96.26 95.14 99.59 96.34

chat-hard
(21.9%)

GRM-llama3.2-3B-rewardmodel-ft 84.43 80.1 100.0 84.0
GRM-llama3-8B-distill 68.20 65.2 79.0 68.3
LDL-Reward-Gemma-2-27B-v0.1 90.57 87.9 100.0 91.3
Llama-3-OffsetBias-RM-8B 82.02 78.1 96.0 83.1
QRM-Llama3.1-8B-v2 86.84 83.1 100.0 87.9
Skywork-Reward-Llama-3.1-8B-v0.2 88.38 85.1 100.0 89.3
Skywork-Reward-Llama-3.1-8B 87.06 83.4 100.0 87.4
internlm2-7b-reward 71.05 68.8 79.0 71.1

Average 82.32 78.96 94.25 82.80

safety
(60.8%)

GRM-llama3.2-3B-rewardmodel-ft 92.57 81.7 99.6 92.8
GRM-llama3-8B-distill 86.49 71.7 96.0 87.6
LDL-Reward-Gemma-2-27B-v0.1 93.65 84.5 99.6 94.5
Llama-3-OffsetBias-RM-8B 87.03 71.7 96.9 87.9
QRM-Llama3.1-8B-v2 92.70 82.1 99.6 92.8
Skywork-Reward-Llama-3.1-8B-v0.2 92.70 82.1 99.6 92.8
Skywork-Reward-Llama-3.1-8B 90.95 77.9 99.3 91.4
internlm2-7b-reward 87.43 73.4 96.4 88.6

Average 90.44 78.14 98.38 91.05

reasoning
(59.0%)

GRM-llama3.2-3B-rewardmodel-ft 94.20 88.2 98.3 94.2
GRM-llama3-8B-distill 91.35 86.0 96.9 92.0
LDL-Reward-Gemma-2-27B-v0.1 98.85 95.7 100.0 98.8
Llama-3-OffsetBias-RM-8B 91.95 85.7 98.3 94.4
QRM-Llama3.1-8B-v2 96.09 91.7 99.2 95.7
Skywork-Reward-Llama-3.1-8B-v0.2 96.66 91.3 99.5 96.3
Skywork-Reward-Llama-3.1-8B 96.27 91.8 98.7 95.7
internlm2-7b-reward 94.64 91.5 97.5 94.7

Average 95.00 90.24 98.55 95.23

Table 2: Reward model accuracies for RewardBench across full, non-redundant, redundant,
and randomly sampled subsets. Redundancy is determined using CONECUT with ε = 0.90.

7 Conclusion and social impact

We present a novel method, CONECUT, for reward model evaluation by pruning redundant
or near-redundant examples in preference datasets such as RewardBench. We formulate a
cone membership test for reward models, implemented via a non-negative least squares
algorithm to find ε-redundant preference pairs from the evaluation dataset. Our experiments
find redundancy in the RewardBench dataset and demonstrate that this redundancy can lead
to inflated performance. Our findings highlight critical societal risks: deploying misaligned
models in high-stakes settings—such as content moderation or automated decision-making—
can result in user harm and diminished public confidence. Our work promotes improved
investigation of popular reward evaluation benchmark results, and we hope that our results
will inspire a stronger focus on redundancy-aware benchmark creation to enable better
alignment testing.
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Subset # Total ϵ = 0.95 ϵ = 0.90

# Red. Percent (%) # Red. Percent (%)

chat 358 20 5.59 91 25.4
chat hard 456 20 4.39 100 21.9
safety 740 322 43.51 450 60.8
reasoning 1431 349 24.39 845 59.0

Table 3: Redundancy rates using the NNLS cone membership test with ϵ = 0.95, and 0.90

A Proof of redundancy–cone membership equivalence

In this section, we prove that a preference (pi, ci, ri) is redundant, i.e., F (X) = F (X−i), if
and only if xi lies in the cone generated by the remaining preferences, i.e., xi ∈ C(X−i).

A.1 Definitions and notation used in the proof

We begin by briefly recalling the key definitions and notation introduced in the main text.

Redundancy. As a reminder, X = {x1, . . . , xN} represents all preference constraints in the
dataset D, and the feasible region of the reward model weights that align with human
preferences is defined as F (X) =

{
w ∈ Rd : w⊤xk ≥ 0, ∀k

}
. We call a preference

(pi, ci, ri) redundant if removing xi leaves the feasible set of halfspace constraints unchanged,
i.e., F (X) = F (X−i), where X−i := X \ {xi}.

Cone of constraints. The cone spanned by all preference excluding i-th is given by:

C(X−i) :=
{

∑
k ̸=i

αk xk, αk ≥ 0
}

.

NNLS solver for cone membership. The non-negative least-squares (NNLS) residual is:

ri := min
αk≥0

∥∥∥∥∥xi − ∑
k ̸=i

αkxk

∥∥∥∥∥
2

.

A.2 Proof

For every constraint xi the following statements are equivalent:

xi is redundant ⇐⇒ xi ∈ C(X−i) ⇐⇒ ri = 0 .

Hence, solving the NNLS sub-problem provides an exact test for redundancy.

(i) Redundancy ⇒ cone membership.

Assume xi is redundant but xi /∈ C(X−i). By the separating hyperplane theorem,
there exists w such that w⊤xk ≥ 0 for all k ̸= i while w⊤xi ≤ −ε < 0. Thus
w ∈ F (X−i) but w /∈ F (X), which contradicts redundancy. Therefore xi ∈ C(X−i).

(ii) Cone membership ⇒ redundancy.

If xi = ∑k ̸=i αkxk, αk ≥ 0, and w satisfies w⊤xk ≥ 0, ∀k ̸= i, then w⊤xi =

∑k ̸=i αk w⊤xk ≥ 0. Hence F (X−i) ⊆ F (X), so dropping xi does not shrink the
feasible set. In other words, if a constraint is already inside the cone, then others
can make up for it, even if we drop this constraint.

(iii) ri = 0 ⇐⇒ cone membership.

The NNLS residual is precisely the Euclidean distance from xi to C(X−i); thus ri = 0
iff xi ∈ C(X−i).
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Combining (i)–(iii) establishes the claimed equivalence.

B Selection of appropriate ε

In this section, we discuss how much slack does the ε redundancy introduce over absolute
redundancy when solving the same problem using linear programming (LP).

Notation. As a reminder, we decide if a preference pair (represented by vector xi) is ε-
redundant by checking how well it can be approximated by the cone generated by all other
preference vectors, C(X−i). We use the coefficient of determination R2 from Non-Negative
Least Squares (NNLS) (Lawson & Hanson, 1995), solving:

ri = min
ak≥0

∥∥∥∥∥xi − ∑
k ̸=i

akxk

∥∥∥∥∥
2

R2
i = 1 −

∥xi − ri∥2
2

∥xi∥2
2

, (8)

where ri is the residual and R2 the coefficient of determination, which quantifies approxima-
tion quality.

Approximate redundancy. Let relative residual be ρi := ∥xi − ri∥2/∥xi∥2, so R2
i = 1 − ρ2

i .
We set ε = 0.95, implying ρi ≤

√
0.05 ≈ 0.224 for redundancy. This means, constraints

exceeding our R2 threshold can be reconstructed to within 22.4% of their l2-norm by using
linear combinations of other constraints, while explaining 95% variance of the said constraint.
For ε = 0.90, this value is 0.316, implying a reconstruction error of 31.6%, with 90% variance
explained for constraints exceeding our R2 threshold.

We can also quantify the angular deviation implied by this approximation. If R2
i ≥0.95, let

θi = ∠
(

xi, x̂i
)

be the angle between the two vectors. By the law of cosines,

ρ2 ∥xi∥2
2 = ∥xi∥2

2 + ∥x̂i∥2
2 − 2 ∥xi∥2 ∥x̂i∥2 cos θi.

The residual is smallest when R2
i is close to 1 or ∥xi∥2 = ∥x̂i∥2. Setting ∥xi∥2 = ∥x̂i∥2 and

dividing by ∥xi∥2
2 gives:

ρ2 = 2 − 2 cos θi =⇒ cos θi = 1 − ρ2

2
(9)

This solves to:

θi ≤ arccos
(

1 − ρ2

2

)
= arccos

(
1 − 0.05

2

)
= arccos(0.975) ≈ 12.8◦ (10)

This implies that pruning ε-redundant constraints at R2 ≥ 0.95 makes sure that the maxi-
mum deviation of that constraint from a true cone element is ≈ 13◦. If we instead use ε =
0.90, this maximum deviation becomes ≈ 18◦.

C Models

In this section, we provide more information about models that we evaluate on various data
subsets.

• Generalisable Reward Models (GRM). We use the GRM-LLAMA-3.2 3B and
GRM-LLAMA-3 8B variants, whose hidden-state regularisation improves out-of-
distribution robustness (Yang et al., 2024).

• LDL Reward Gemma 27B. This model predicts a label distribution rather than a
point estimate, yielding smoother gradients for RLHF.

• Quantile Reward Model (QRM) Llama-3.1 8B. QRM learns a full reward distribution
via quantile regression (Dorka, 2024).

• Llama-3 OffsetBias 8B. Fine-tuned on the OFFSETBIAS corpus to mitigate length
and style artifacts in judge models (Park et al., 2024).
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• Skywork-Reward Llama-3.1 8B (v0 and v0.2). Trained on an 80k, data-centric
preference set that emphasises high-quality, diverse prompts (Liu et al., 2024a).

• InternLM-2 7B Reward. Produced via the COOL-RLHF pipeline described in the
InternLM2 technical report (Cai et al., 2024).
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